The association of chronic inflammation with colorectal carcinoma (CRC) development is well known in ulcerative colitis (UC). However, the role of inflammatory changes in sporadic CRC pathogenesis is less widely appreciated. In this study, in the first step using RNA-seq, we identified gene-pathway-level changes in UC-associated CRC (UC CRC, n = 10) and used the changes as a proxy for inflammation in human colon to ask if there were associations of inflammatory pathway dysregulations in sporadic CRC pathogenesis (n = 8). We found down-regulations of several inflammation-related metabolic pathways (nitrogen metabolism, sulfur metabolism) and other pathways (bile secretion, fatty acid degradation) in sporadic CRC. Non-inflammation-related changes included up-regulation of the proteasome pathway. In the next step, from a larger number of paired samples from sporadic CRC patients (n = 71) from a geographically and ethnically different population and using a different platform (microarray), we asked if the inflammation-CRC association could be replicated. The associations were significant even after stratification by sex, tumor stage, grade, MSI status, and KRAS mutation status. Our findings have important implications to widen our understanding of inflammatory pathogenesis of sporadic CRC. Furthermore, targeting of several of these dysregulated pathways could provide the basis for improved therapies for CRC.
Keywords: IL-17; RNA-seq; colorectal carcinoma; inflammation; methylome; nitrogen metabolism; proteasome; sulfur metabolism; transcriptomic; ulcerative colitis.