Modulation and neural correlates of postmating sleep plasticity in Drosophila females

Curr Biol. 2023 Jul 10;33(13):2702-2716.e3. doi: 10.1016/j.cub.2023.05.054. Epub 2023 Jun 22.

Abstract

Sleep is essential, but animals may forgo sleep to engage in other critical behaviors, such as feeding and reproduction. Previous studies have shown that female flies exhibit decreased sleep after mating, but our understanding of the process is limited. Here, we report that postmating nighttime sleep loss is modulated by diet and sleep deprivation, demonstrating a complex interaction among sleep, reproduction, and diet. We also find that female-specific pC1 neurons and sleep-promoting dorsal fan-shaped body (dFB) neurons are required for postmating sleep plasticity. Activating pC1 neurons leads to sleep suppression on standard fly culture media but has little sleep effect on sucrose-only food. Published connectome data suggest indirect, inhibitory connections among pC1 subtypes. Using calcium imaging, we show that activating the pC1e subtype inhibits dFB neurons. We propose that pC1 and dFB neurons integrate the mating status, food context, and sleep drive to modulate postmating sleep plasticity.

Keywords: Drosophila; diet; dorsal fan-shaped body; egg laying; mating; motivation; nutrition; pC1 neurons; reproduction; sleep.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Drosophila / physiology
  • Drosophila Proteins* / physiology
  • Drosophila melanogaster / physiology
  • Female
  • Sleep / physiology
  • Sleep Deprivation
  • Sleep Initiation and Maintenance Disorders*

Substances

  • Drosophila Proteins