A Fully Conjugated Covalent Organic Framework with Oxidative and Reductive Sites for Photocatalytic Carbon Dioxide Reduction with Water

Angew Chem Int Ed Engl. 2023 Sep 4;62(36):e202308523. doi: 10.1002/anie.202308523. Epub 2023 Jul 28.

Abstract

Constructing a powerful photocatalytic system that can achieve the carbon dioxide (CO2 ) reduction half-reaction and the water (H2 O) oxidation half-reaction simultaneously is a very challenging but meaningful task. Herein, a porous material with a crystalline topological network, named viCOF-bpy-Re, was rationally synthesized by incorporating rhenium complexes as reductive sites and triazine ring structures as oxidative sites via robust -C=C- bond linkages. The charge-separation ability of viCOF-bpy-Re is promoted by low polarized π-bridges between rhenium complexes and triazine ring units, and the efficient charge-separation enables the photogenerated electron-hole pairs, followed by an intramolecular charge-transfer process, to form photogenerated electrons involved in CO2 reduction and photogenerated holes that participate in H2 O oxidation simultaneously. The viCOF-bpy-Re shows the highest catalytic photocatalytic carbon monoxide (CO) production rate (190.6 μmol g-1 h-1 with about 100 % selectivity) and oxygen (O2 ) evolution (90.2 μmol g-1 h-1 ) among all the porous catalysts in CO2 reduction with H2 O as sacrificial agents. Therefore, a powerful photocatalytic system was successfully achieved, and this catalytic system exhibited excellent stability in the catalysis process for 50 hours. The structure-function relationship was confirmed by femtosecond transient absorption spectroscopy and density functional theory calculations.

Keywords: CO2 Reduction; H2O Oxidation; Photocatalysis; Vinylene Linkers.