Leveraging computation in the development of peptide therapeutics has garnered increasing recognition as a valuable tool to generate novel therapeutics for disease-related targets. To this end, computation has transformed the field of peptide design through identifying novel therapeutics that exhibit enhanced pharmacokinetic properties and reduced toxicity. The process of in-silico peptide design involves the application of molecular docking, molecular dynamics simulations, and machine learning algorithms. Three primary approaches for peptide therapeutic design including structural-based, protein mimicry, and short motif design have been predominantly adopted. Despite the ongoing progress made in this field, there are still significant challenges pertaining to peptide design including: enhancing the accuracy of computational methods; improving the success rate of preclinical and clinical trials; and developing better strategies to predict pharmacokinetics and toxicity. In this review, we discuss past and present research pertaining to the design and development of in-silico peptide therapeutics in addition to highlighting the potential of computation and artificial intelligence in the future of disease therapeutics.
Keywords: InSiPS; artificial intelligence; computational biology; peptide design; peptide drugs; protein–protein interaction.