Enhancement of Lipid Stability of Frozen Fish by Octopus-Waste Glazing

Foods. 2023 Jun 7;12(12):2298. doi: 10.3390/foods12122298.

Abstract

The antioxidant properties of the liquor resulting from commercial octopus cooking were analysed for this study. Two different concentrations of octopus-cooking liquor (OCL) were tested as glazing systems during the frozen storage period (-18 °C for up to 6 months) of whole Atlantic horse mackerel (Trachurus trachurus). Compared to water-control glazing samples, an inhibitory effect (p < 0.05) on lipid oxidation development (the formation of thiobarbituric acid reactive substances and fluorescent compounds) was detected in frozen fish treated with the most concentrated OCL-glazing system. Additionally, a preservative effect (p < 0.05) on polyunsaturated fatty acids (measurement of polyene index) was also proved. However, no effect (p > 0.05) on the free fatty acid content and on the ω3/ω6 ratio was detected with the presence of the OCL in the glazing system. An increased lipid quality in frozen horse mackerel was established by including the OCL solution in the glazing system. According to previous research, the observed preserving properties were explained on the basis of the presence of antioxidant compounds in the cooking liquor. A novel and valuable combination of glazing processing and the employment of a marine waste substrate is proposed to enhance the lipid stability of frozen fish.

Keywords: horse mackerel; hydrolysis; octopus-cooking liquor; oxidation; quality; rancidity; ω3 fatty acids.