Due to its poor solubility and systemic side effects, gefitinib (Gef) has limited application in treatment of lung cancer. In this study, we used design of experiment (DOE) tools to gain the necessary knowledge for the synthesis of high-quality gefitinib loaded chitosan nanoparticles (Gef-CSNPs) capable of delivering and concentrating Gef at A549 cells, thereby increasing therapeutic effectiveness while decreasing adverse effects. The optimized Gef-CSNPs were characterized by SEM, TEM, DSC, XRD, and FTIR analyses. The optimized Gef-CSNPs had a particle size of 158±3.6 nm, an entrapment efficiency of 93±1.2 %, and a release of 97±0.6 % after 8 h. The in vitro cytotoxicity of the optimized Gef-CSNPs was found to be significantly higher than pure Gef (IC50 = 10.08 ± 0.76 μg/mL and IC50 = 21.65 ± 0.32 μg/mL), respectively. In the A549 human cell line, the optimized Gef-CSNPs formula outperformed pure Gef in terms of cellular uptake (3.286 ± 0.12 μg/mL and 1.777 ± 0.1 μg/mL) and apoptotic population (64.82 ± 1.25 % and 29.38 ± 1.11 %), respectively. These findings explain why researchers are so interested in using natural biopolymers to combat lung cancer, and they paint an optimistic picture of their potential as a promising tool in the fight against lung cancer.
Keywords: Apoptosis assay; Cellular drug uptake; Chitosan nanoparticles; Design of experiment; Gefitinib; Lung cancer.
Copyright © 2023 Elsevier B.V. All rights reserved.