Cartilage tissue engineering necessitates the right mechanical cues to regenerate impaired tissue. For this reason, bioreactors can be employed to induce joint-relevant mechanical loading, such as compression and shear. However, current articulating joint bioreactor designs are lacking in terms of sample size and usability. In this paper, we describe a new, simple-to-build and operate, multi-well kinematic load bioreactor and investigate its effect on the chondrogenic differentiation of human bone marrow-derived stem cells (MSCs). We seeded MSCs into a fibrin-polyurethane scaffold and subsequently exposed the samples to a combination of compression and shear for 25 days. The mechanical loading activates transforming growth factor beta 1, upregulates chondrogenic genes, and increases sulfated glycosaminoglycan retention within the scaffolds. Such a higher-throughput bioreactor could be operated in most cell culture laboratories, dramatically accelerating and improving the testing of cells, new biomaterials, and tissue-engineered constructs.
Keywords: Bioengineering; Biotechnology; Cell biology; Tissue Engineering.
© 2023 The Author(s).