B-cell targeting with anti-CD38 daratumumab: implications for differentiation and memory responses

Life Sci Alliance. 2023 Jul 7;6(9):e202302214. doi: 10.26508/lsa.202302214. Print 2023 Sep.

Abstract

B cell-targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell-dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-κB in B cells and the transcription of NF-κB-targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell-mediated diseases other than the currently targeted malignancies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ADP-ribosyl Cyclase 1 / genetics
  • ADP-ribosyl Cyclase 1 / metabolism
  • Cell Differentiation
  • Humans
  • Multiple Myeloma* / drug therapy
  • Multiple Myeloma* / genetics
  • Multiple Myeloma* / pathology
  • NF-kappa B

Substances

  • daratumumab
  • ADP-ribosyl Cyclase 1
  • NF-kappa B