Background: Breast cancer (BC) with low human epidermal growth factor receptor 2 (HER2) expression is attracting much attention due to the breakthrough progress of novel anti-HER2 antibody-drug conjugates. HER2 expression is examined in patients with HER2-low BC and their distant metastases in this study, so as to further clarify the dynamic characteristics of HER2 low status in the process of disease progression.
Methods: Patients diagnosed with HER2 low breast cancer (defined as IHC1+ or IHC2+/ISH-) between 2012 and 2021 were included in this study. We evaluated HER2 expression of primary sites and metastatic sites, compared the impact of different clinicopathological parameters on HER2 status of metastases and compared the overall survival and disease-free survival of patients with different HER2 status in metastases.
Results: Ninety-eight patients were included. All HER2 IHC scores were confirmed and the consistent rate with the original pathological report was 81.1%. 27.6% of the patients showed different HER2 status in metastases. The HER2 discordance rate differed among different metastatic sites (p = 0.040). The higher the T stage of the primary BC, the higher the rate of HER2 discordance was observed (p = 0.042). For the specimen type of metastasis, HER2 discordant rate was higher in surgical specimen than biopsy (p = 0.050). No difference of HER2 discordance rate was found between HER2-1+ and HER2-2+ patients. But comparing HER2 IHC score, HER2-2+ patients were less likely to have consistent metastatic HER2 levels than HER2-1+ patients (p = 0.006). No difference in survival outcomes was observed between patients with different HER2 status in metastases.
Conclusions: There is a possibility of HER2 expression alteration in the metastases of HER2-low breast cancer. And the rate of altered HER2 low expression was different among different metastatic sites, different T stages of primary BC and specimen type of metastasis. No prognostic significance was observed.
Keywords: Anti-HER2 antibody-drug conjugates; Breast cancer; HER2 discordance; HER2-low expression; Metastasis.
© 2023. The Author(s).