Background: Although the autonomic reaction such as bradycardia is observed frequently during pulsed-field ablation (PFA)-guided pulmonary vein isolation (PVI), its mechanism and effect on the adjacent intrinsic cardiac autonomic nervous system (ICANS) are unclear.
Objectives: This study aimed to reveal the clinical impact of PFA on ICANS by investigating the serum S100 increase (ΔS100), a well-known denervation relevant biomarker.
Methods: Pre- and postprocedural serum S100 analyses were systematically conducted in patients undergoing PVI using either the pentaspline PFA or cryoballoon ablation (CBA) system. ΔS100 release kinetics were compared between both technologies. Cerebral magnetic resonance imaging was conducted to eliminate the effect of central nervous system release.
Results: A total of 97 patients (PFA: n = 54 and CBA: n = 43) were enrolled. Overall S100 increased in both groups with a lower amount in PFA (0.035 μg/L; IQR: 0.02-0.063 μg/L) compared with CBA (0.12 μg/L; IQR: 0.09-0.17 μg/L; P < 0.0001). In cerebral magnetic resonance imaging, silent emboli were detected in 10 patients (18.5%) in PFA and 7 patients (16.3%) in CBA (P = 0.773). Even after excluding patients with cerebral emboli, ΔS100 was lower in PFA. During PFA PVI, 30 patients (56%) demonstrated transient bradycardia in 70 of 210 PVs (35%). ΔS100 was similar between patients with or without transient bradycardia.
Conclusions: We report a significantly lower S100 release following PFA PVI vs CBA PVI even if silent cerebral emboli were excluded. Notably, vagal response during PFA was not associated with S100 release. These observations are in line with lower nervous tissue destruction of PFA compared with CBA.
Keywords: atrial fibrillation; denervation; intrinsic cardiac autonomic nervous system; pulsed field ablation.
Copyright © 2023 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.