Rapid apple decline is a phenomenon characterized by a weakening of young apple trees in high density orchards, often followed by their quick collapse. The nature of this phenomenon remains unclear. In this work, we investigated the root system architecture (RSA) of declining and non-declining apple trees in two orchards in New York State. High-density orchard A consisted of 4-year-old 'Honeycrisp' on 'Malling 9 Nic29', and conventional orchard B consisted of 8-year-old 'Fuji' on 'Budagovsky 9'. In both orchards, a negative correlation (-0.4--0.6) was observed between RSA traits and decline symptoms, suggesting that declining trees have weaker root systems. Scion trunk diameter at the graft union, total root length, and the length of fine and coarse roots were significantly (p < 0.05) reduced in declining trees in both orchards. Additionally, internal trunk necrosis at, above, and below the graft union was observed in declining trees in orchard A but not in orchard B. Finally, latent viruses were not associated with decline, as their occurrence was documented in declining and non-declining trees in orchard A, but not in orchard B. Together, these results showed weakened root systems of declining trees, suggesting that these trees may experience deficiencies in water and nutrient uptake, although distinct RSA and trunk health traits between the two orchards were noticeable.
Keywords: Malus domestica; latent viruses; rapid apple decline; root traits; rootstock.