Association of Olfaction and Microstructural Integrity of Brain Tissue in Community-Dwelling Adults: Atherosclerosis Risk in Communities Neurocognitive Study

Neurology. 2023 Sep 26;101(13):e1328-e1340. doi: 10.1212/WNL.0000000000207636. Epub 2023 Aug 4.

Abstract

Background and objectives: Research on olfaction and brain neuropathology may help understand brain regions associated with normal olfaction and dementia pathophysiology. To identify early regional brain structures affected in poor olfaction, we examined cross-sectional associations of microstructural integrity of the brain with olfaction in the Atherosclerosis Risk in Communities Neurocognitive Study.

Methods: Participants were selected from a prospective cohort study of community-dwelling adults; selection criteria included the following: evidence of cognitive impairment, participation in a previous MRI study, and a random sample of cognitively normal participants. Microstructural integrity was measured by 2 diffusion tensor imaging (DTI) measures, fractional anisotropy (FA) and mean diffusivity (MD), and olfaction by a 12-item odor identification test at the same visit. Higher FA and MD values indicate better and worse microstructural integrity, respectively, and higher odor identification scores indicate better olfaction. We used brain region-specific linear regression models to examine associations between DTI measures and olfaction, adjusting for potential confounders.

Results: Among 1,418 participants (mean age 76 ± 5 years, 41% male, 21% Black race, 59% with normal cognition), the mean olfaction score was 9 ± 2.3. Relevant to olfaction, higher MD in the medial temporal lobe (MTL) regions, namely the hippocampus (β -0.79 [95% CI -0.94 to -0.65] units lower olfaction score per 1 SD higher MD), amygdala, entorhinal area, and some white matter (WM) tracts connecting to these regions, was associated with olfaction. We also observed associations with MD and WM FA in multiple atlas regions that were not previously implicated in olfaction. The associations between MD and olfaction were particularly stronger in the MTL regions among individuals with mild cognitive impairment (MCI) compared with those with normal cognition (e.g., βhippocampus -0.75 [95% CI -1.02 to -0.49] and -0.44 [95% CI -0.63 to -0.26] for MCI and normal cognition, respectively, p interaction = 0.004).

Discussion: Neuronal microstructural integrity in multiple brain regions, particularly the MTL (the regions known to be affected in early Alzheimer disease), is associated with odor identification ability. Differential associations in the MTL regions among cognitively normal individuals compared with those with MCI may reflect the earlier vs later effects of the dementia pathogenesis. It is likely that some of the associated regions may not have any functional relevance to olfaction.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Anisotropy
  • Atherosclerosis* / diagnostic imaging
  • Atherosclerosis* / epidemiology
  • Brain / diagnostic imaging
  • Brain / pathology
  • Cross-Sectional Studies
  • Dementia* / pathology
  • Diffusion Tensor Imaging / methods
  • Female
  • Humans
  • Independent Living
  • Male
  • Prospective Studies
  • Smell
  • White Matter* / diagnostic imaging
  • White Matter* / pathology