Cerebrospinal fluid (CSF) leakage is a common postoperative complication of neurosurgical procedures, with iatrogenic causes accounting for 16% of CSF leakages. This complication increases healthcare costs and patient morbidity. The focus of this review is to analyze the rates of CSF leakage of some of the most commonly used xenogeneic and synthetic dural substitutes following surgeries in the infratentorial region of the brain where surgical repair can be most challenging. A systematic literature search was conducted using studies detailing duraplasty procedures performed with nonautologous grafts in the infratentorial region in PubMed. Studies were identified using the following search terms: "posterior fossa" or "infratentorial" were used in combination with "CSF leak," "CSF leakage," "cerebrospinal fluid leakage," "duraplasty" or "dura graft." The outcome of interest was a measure of the prevalence of CSF leakage rates following posterior fossa neurosurgery. Studies that contributed data to this review were published between 2006 and 2021. The dural graft materials utilized included: bovine collagen, acellular dermis, equine collagen, bovine pericardium, collagen matrix, and expanded polytetrafluoroethylene (ePTFE). The number of subjects in studies on each of these grafts ranged from 6 to 225. CSF leak rates ranged from 0% to 25% with the predominance of studies reporting between 3% and 15%. The studies that utilize bovine collagen, equine collagen, and acellular dermis reported higher CSF leakage rates; whereas studies that utilized ePTFE, bovine pericardium, and collagen matrix reported lower CSF leakage rates. Due to the heterogeneity of methodologies used across these studies, it is difficult to draw a direct correlation between the dural patch products used and CSF leaks. Larger prospective controlled studies that evaluate various products in a head-to-head fashion, using the same methods and animal models, are needed to conclude the relative efficacy of these dural patch products.