Background: Emerging ferroptosis-driven therapies based on nanotechnology function either by increasing intracellular iron level or suppressing glutathione peroxidase 4 (GPX4) activity. Nevertheless, the therapeutic strategy of simultaneous iron delivery and GPX4 inhibition remains challenging and has significant scope for improvement. Moreover, current nanomedicine studies mainly use disulfide-thiol exchange to deplete glutathione (GSH) for GPX4 inactivation, which is unsatisfactory because of the compensatory effect of continuous GSH synthesis.
Methods: In this study, we design a two-in-one ferroptosis-inducing nanoplatform using iron-based metal-organic framework (MOF) that combines iron supply and GPX4 deactivation by loading the small molecule buthionine sulfoxide amine (BSO) to block de novo GSH biosynthesis, which can achieve sustainable GSH elimination and dual ferroptosis amplification. A coated lipid bilayer (L) can increase the stability of the nanoparticles and a modified tumor-homing peptide comprising arginine-glycine-aspartic acid (RGD/R) can achieve tumor-specific therapies. Moreover, as a decrease in GSH can alleviate resistance of cancer cells to chemotherapy drugs, oxaliplatin (OXA) was also loaded to obtain BSO&OXA@MOF-LR for enhanced cancer chemo-ferrotherapy in vivo.
Results: BSO&OXA@MOF-LR shows a robust tumor suppression effect and significantly improved the survival rate in 4T1 tumor xenograft mice, indicating a combined effect of dual amplified ferroptosis and GSH elimination sensitized apoptosis.
Conclusion: BSO&OXA@MOF-LR is proven to be an efficient ferroptosis/apoptosis hybrid anti-cancer agent. This study is of great significance for the clinical development of novel drugs based on ferroptosis and apoptosis for enhanced cancer chemo-ferrotherapy.
Keywords: Cancer therapy; Ferroptosis; GSH elimination; Metal-organic frameworks.
© 2023. BioMed Central Ltd., part of Springer Nature.