Retinal ganglion cells encode differently in the myopic mouse retina?

Exp Eye Res. 2023 Sep:234:109616. doi: 10.1016/j.exer.2023.109616. Epub 2023 Aug 12.

Abstract

The etiology of myopia remains unclear. This study investigated whether retinal ganglion cells (RGCs) in the myopic retina encode visual information differently from the normal retina and to determine the role of Connexin (Cx) 36 in this process. Generalized linear models (GLMs), which can capture stimulus-dependent changes in real neurons with spike timing precision and reliability, were used to predict RGCs responses to focused and defocused images in the retinas of wild-type (normal) and Lens-Induced Myopia (LIM) mice. As the predominant subunit of gap junctions in the mouse retina and a plausible modulator in myopia development, Cx36 knockout (KO) mice were used as a control for an intact retinal circuit. The kinetics of excitatory postsynaptic currents (EPSCs) of a single αRGC could reflect projection of both focused and defocused images in the retinas of normal and LIM, but not in the Cx36 knockout mice. Poisson GLMs revealed that RGC encoding of visual stimuli in the LIM retina was similar to that of the normal retina. In the LIM retinas, the linear-Gaussian GLM model with offset was a better fit for predicting the spike count under a focused image than the defocused image. Akaike information criterion (AIC) indicated that nonparametric GLM (np-GLM) model predicted focused/defocused images better in both LIM and normal retinas. However, the spike counts in 33% of αRGCs in LIM retinas were better fitted by exponential GLM (exp-GLM) under defocus, compared to only 13% αRGCs in normal retinas. The differences in encoding performance between LIM and normal retinas indicated the possible amendment and plasticity of the retinal circuit in myopic retinas. The absence of a similar response between Cx36 KO mice and normal/LIM mice might suggest that Cx36, which is associated with myopia development, plays a role in encoding focused and defocused images.

Keywords: Machine learning; Myopia; Retina; Retinal ganglion cells (RGCs); Vision.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Mice
  • Mice, Knockout
  • Myopia* / etiology
  • Reproducibility of Results
  • Retina
  • Retinal Ganglion Cells* / physiology