Tumor Radiomic Features on Pretreatment MRI to Predict Response to Lenvatinib plus an Anti-PD-1 Antibody in Advanced Hepatocellular Carcinoma: A Multicenter Study

Liver Cancer. 2022 Nov 28;12(3):262-276. doi: 10.1159/000528034. eCollection 2023 Aug.

Abstract

Introduction: Lenvatinib plus an anti-PD-1 antibody has shown promising antitumor effects in patients with advanced hepatocellular carcinoma (HCC), but with clinical benefit limited to a subset of patients. We developed and validated a radiomic-based model to predict objective response to this combination therapy in advanced HCC patients.

Methods: Patients (N = 170) who received first-line combination therapy with lenvatinib plus an anti-PD-1 antibody were retrospectively enrolled from 9 Chinese centers; 124 and 46 into the training and validation cohorts, respectively. Radiomic features were extracted from pretreatment contrast-enhanced MRI. After feature selection, clinicopathologic, radiomic, and clinicopathologic-radiomic models were built using a neural network. The performance of models, incremental predictive value of radiomic features compared with clinicopathologic features and relationship between radiomic features and survivals were assessed.

Results: The clinicopathologic model modestly predicted objective response with an AUC of 0.748 (95% CI: 0.656-0.840) and 0.702 (95% CI: 0.547-0.884) in the training and validation cohorts, respectively. The radiomic model predicted response with an AUC of 0.886 (95% CI: 0.815-0.957) and 0.820 (95% CI: 0.648-0.984), respectively, with good calibration and clinical utility. The incremental predictive value of radiomic features to clinicopathologic features was confirmed with a net reclassification index of 47.9% (p < 0.001) and 41.5% (p = 0.025) in the training and validation cohorts, respectively. Furthermore, radiomic features were associated with overall survival and progression-free survival both in the training and validation cohorts, but modified albumin-bilirubin grade and neutrophil-to-lymphocyte ratio were not.

Conclusion: Radiomic features extracted from pretreatment MRI can predict individualized objective response to combination therapy with lenvatinib plus an anti-PD-1 antibody in patients with unresectable or advanced HCC, provide incremental predictive value over clinicopathologic features, and are associated with overall survival and progression-free survival after initiation of this combination regimen.

Keywords: Anti-PD-1 antibody; Hepatocellular carcinoma; Lenvatinib; Prediction; Radiomics.

Grants and funding

This work was supported by the Leading Investigator Program of the Shanghai municipal government (17XD1401100), the National Key Basic Research Program (973 Program, 2015CB554005) from the Ministry of Science and Technology of China, the National Natural Science Foundation of China (81871928), the Special Research Fund for Liver Cancer Diagnosis and Treatment from the China Anti-Cancer Association (H2020-008), and the Clinical Research Special Fund of Zhongshan Hospital, Fudan University (2020ZSLC71) to Hui-Chuan Sun.