Neovascular age-related macular degeneration (nAMD) is a leading cause of blindness in the aging population, with vascular endothelial growth factor (VEGF) playing a key role. Treatment with recombinant anti-VEGFs is the current standard of care; however, it is only effective for 1-2 months at a time and requires re-administration. Gene therapy could pave the way for stable, long-term expression of therapeutic anti-VEGF with a single dose, reducing the frequency of treatment and potentially improving clinical outcomes. As such, we have developed OXB-203, a lentiviral-based gene therapy encoding the anti-VEGF protein aflibercept. Aflibercept derived from OXB-203 exhibited comparable in vitro binding characteristics to VEGF as recombinant aflibercept. Furthermore, its biological potency was demonstrated by the equivalent inhibition of VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and tubule formation as recombinant aflibercept. In a rat choroidal neovascularization (CNV) model of nAMD, a single subretinal administration of OXB-203 reduced laser-induced CNV lesion areas analogous to an intravitreal bolus of recombinant aflibercept. Finally, in a head-to-head comparative study, aflibercept derived from OXB-203 was shown to be expressed at significantly higher levels in ocular tissues than from an AAV8-aflibercept vector following a single subretinal delivery to rats. These findings support the therapeutic potential of OXB-203 for the management of nAMD.
Keywords: AAV; EIAV; HIV-1; aflibercept; gene therapy; lentiviral vectors; neovascular AMD.
© 2023 Oxford Biomedica (UK) Ltd.