Directly measuring individual cow energy balance is not trivial. Other traits such as body condition score (BCS) and BCS change (ΔBCS) can, however, be used as an indicator of cow energy status. Body condition score is a metric used worldwide to estimate cow body reserves, but the estimation of ΔBCS was, until now, conditional on the availability of multiple BCS assessments. The aim of the present study was to estimate ΔBCS from milk mid-infrared (MIR) spectra and days in milk (DIM) in intensively fed dairy cows using statistical prediction methods. Daily BCS was interpolated from cubic splines fitted through the BCS records and daily ΔBCS was calculated from these splines. The ΔBCS records were merged with milk MIR spectra recorded on the same week. The dataset comprised 37,077 ΔBCS phenotypes across 9,403 lactations from 6,988 cows in 151 herds based in Quebec, Canada. Partial least squares regression (PLSR) and a neural network (NN) were then used to estimate ΔBCS from (1) MIR spectra only, (2) DIM only, or (3) MIR spectra and DIM together. The ΔBCS data in both the first 120 and 305 DIM of lactation were used to develop the estimates. Daily ΔBCS had a standard deviation of 4.40 × 10-3 BCS units in the 120-d dataset and of 3.63 × 10-3 BCS units in the 305-d dataset. A 4-fold cross-validation was used to calibrate and test the prediction equations. External validation was also conducted using more recent years of data. Irrespective of whether based on the first 120 or 305 DIM, or when MIR spectra only, DIM only or MIR spectra and DIM were jointly used as prediction variables, NN produced the lowest root mean square error (RMSE) of cross-validation (1.81 × 10-3 BCS units and 1.51 × 10-3 BCS units, respectively, using the 120-d and 305-d dataset). Relative to predictions for the entire 305 DIM, the RMSE of cross-validation was 15.4% and 1.5% lower in the first 120 DIM when using PLSR and NN, respectively. Predictions from DIM only were more accurate than those using just MIR spectra data but, irrespective of the dataset and of the prediction model used, combining DIM information with MIR spectral data as prediction variables reduced the RMSE compared with the inclusion of DIM alone, albeit the benefit was small (the RMSE from cross-validation reduced by up to 5.5% when DIM and spectral data were jointly used as model features instead of DIM only). However, when predicting extreme ΔBCS records, the MIR spectral data were more informative than DIM. Model performance when predicting ΔBCS records in future years was similar to that from cross-validation demonstrating the ability of MIR spectra of milk and DIM combined to estimate ΔBCS, particularly in early lactation. This can be used to routinely generate estimates of ΔBCS to aid in day-to-day individual cow management.
Keywords: body condition score; energy balance; neural networks; prediction.
© 2023, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).