Comparative Evaluation of Flexural Strength of Conventional Glass Ionomer Cement and Glass Ionomer Cement Modified with Chitosan, Titanium Dioxide Nanopowder and Nanohydroxyapatite: An In Vitro Study

Int J Clin Pediatr Dent. 2023 Aug;16(Suppl 1):S72-S76. doi: 10.5005/jp-journals-10005-2617.

Abstract

Aim: To evaluate the effect of different add-ons on the flexural strength (FS) of glass ionomer cement (GIC).

Materials and methods: Around 72 samples were fabricated and divided among the following six different groups: group I-control (conventional GIC-nonmodified), group II-GIC powder modified with 3% titanium dioxide (TiO2) and liquid is unmodified, group III-powder modified with 10% nanohydroxyapatite (nHA) and liquid is unmodified, group IV-powder is unmodified and Liquid is modified with 10% chitosan (CH), group V-powder is modified with 3% TiO2 and liquid is modified with 10% CH, and group VI-powder is modified with 10% nHA and liquid is modified with 10% CH. The samples were then subjected to a three-point bending test on a universal testing machine for the evaluation of FS. The results obtained were analyzed statistically using the analysis of variance (ANOVA) test.

Result: The mean FS value of group V depicts significantly high FS among all groups (29.42 ± 3.35). A significant difference was present in FS amongst all the groups that is groups V>II>IV>VI>III>I.

Conclusion: Glass ionomer cement (GIC) powder can be modified with nHA, nanotitanium, and GIC liquid can be modified with CH to improve its FS.

Clinical significance: Glass ionomer cement (GIC) supplemented with additives like nanoparticles (NPs) and CH can be used as an enhanced filling material due to its potential antibacterial properties and in areas with a high masticatory load.

How to cite this article: Showkat I, Chaudhary S, Sinha AA, et al. Comparative Evaluation of Flexural Strength of Conventional Glass Ionomer Cement and Glass Ionomer Cement Modified with Chitosan, Titanium Dioxide Nanopowder and Nanohydroxyapatite: An In Vitro Study. Int J Clin Pediatr Dent 2023;16(S-1):S72-S76.

Keywords: 10% nanohydroxyapatite; Chitosan; Flexural strength; Glass ionomer cement; In vitro study.