Surviving hot summer: Roles of phenotypic plasticity of intertidal mobile species considering microhabitat environmental heterogeneity

J Therm Biol. 2023 Oct:117:103686. doi: 10.1016/j.jtherbio.2023.103686. Epub 2023 Aug 24.

Abstract

For species inhabiting warming and variable thermal environment, coordinated changes in heat tolerance to temperature fluctuations, which largely depend on phenotypic plasticity, are pivotal in buffering high temperatures. Determining the roles of phenotypic plasticity in wild populations and common garden experiments help us understand how organisms survive hot summer and the warming world. We thus monitored the operative temperature of the intertidal limpets Cellana toreuma in both emergent rock and tidal pool microhabitats from June to October 2021, determined the variations of upper thermal limits of short-term acclimated and long-term acclimated limpets from different microhabitats (emergent rock and tidal pool), and further calculated the relationship between the upper thermal limits and acclimation capacity. Our results indicated that living on the emergent rock, limpets encountered more extreme events in summer. For the short-term acclimated samples, limpets on the emergent rock exhibited obvious variations of sublethal thermal limit (i.e., Arrhenius Break Point of cardiac performance, ABT) during summer months, however, this variation of ABT was absent in the limpets in the tidal pool. After the laboratory long-term acclimation, the ABTs and FLTs (Flat Line Temperature of cardiac performance, as an indicator of lethal temperature) of limpets both on the rock and in the tidal pool increased significantly in October, implying the potential existence of selection during the hot summer. Our results further showed that environmental temperature was an important driver of phenotypic plasticity. This study highlighted the changes in the thermal tolerance of intertidal limpets during summer in different microhabitats.

Keywords: Environmental selection; Intertidal zone; Microhabitat; Physiological plasticity.