Purpose: The purpose of this study is to develop a virtual CBCT simulator with a head and neck (HN) human phantom library and to demonstrate the feasibility of elemental material decomposition (EMD) for quantitative CBCT imaging using this virtual simulator.
Methods: The library of 36 HN human phantoms were developed by extending the ICRP 110 adult phantoms based on human age, height, and weight statistics. To create the CBCT database for the library, a virtual CBCT simulator that simulated the direct and scattered X-ray on a flat panel detector using ray-tracing and deep-learning (DL) models was used. Gaussian distributed noise was also included on the flat panel detector, which was evaluated using a real CBCT system. The usefulness of the virtual CBCT system was demonstrated through the application of the developed DL-based EMD model for case involving virtual phantom and real patient.
Results: The virtual simulator could generate various virtual CBCT images based on the human phantom library, and the prediction of the EMD could be successfully performed by preparing the CBCT database from the proposed virtual system, even for a real patient. The CBCT image degradation owing to the scattered X-ray and the statistical noise affected the prediction accuracy, although these effects were minimal. Furthermore, the elemental distribution using the real CBCT image was also predictable.
Conclusions: This study demonstrated the potential of using computer vision for medical data preparation and analysis, which could have important implications for improving patient outcomes, especially in adaptive radiation therapy.
Keywords: Artificial intelligence; Computer vision; Cone-beam computed tomography; Human phantom; Material decomposition; Monte Carlo simulation.
Copyright © 2023 Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd. All rights reserved.