HIV-1 uses heterogeneous transcription start sites (TSSs) to generate two RNA 5´ isoforms that adopt radically different structures and perform distinct replication functions. Although these RNAs differ in length by only two bases, exclusively, the shorter RNA is encapsidated while the longer RNA is excluded from virions and provides intracellular functions. The current study examined TSS usage and packaging selectivity for a broad range of retroviruses and found that heterogeneous TSS usage was a conserved feature of all tested HIV-1 strains, but all other retroviruses examined displayed unique TSSs. Phylogenetic comparisons and chimeric viruses' properties provided evidence that this mechanism of RNA fate determination was an innovation of the HIV-1 lineage, with determinants mapping to core promoter elements. Fine-tuning differences between HIV-1 and HIV-2, which uses a unique TSS, implicated purine residue positioning plus a specific TSS-adjacent dinucleotide in specifying multiplicity of TSS usage. Based on these findings, HIV-1 expression constructs were generated that differed from the parental strain by only two point mutations yet each expressed only one of HIV-1's two RNAs. Replication defects of the variant with only the presumptive founder TSS were less severe than those for the virus with only the secondary start site. IMPORTANCE Retroviruses use RNA both to encode their proteins and to serve in place of DNA as their genomes. A recent surprising discovery was that the genomic RNAs and messenger RNAs of HIV-1 are not identical but instead differ subtly on one of their ends. These differences enable the functional separation of HIV-1 RNAs into genome and messenger roles. In this report, we examined a broad collection of HIV-1-related viruses and discovered that each produced only one end class of RNA, and thus must differ from HIV-1 in how they specify RNA fates. By comparing regulatory signals, we generated virus variants that pinpointed the determinants of HIV-1 RNA fates, as well as HIV-1 variants that produced only one or the other functional class of RNA. Competition and replication assays confirmed that HIV-1 has evolved to rely on the coordinated actions of both its RNA forms.
Keywords: HIV-1; RNA folding; transcription.