Corn processing industries generate an extensive fibrous byproduct consisting of corn fiber gum (CFG) and residual starch (S). The present study hypothesized that CFG and S could be isolated as a single crosslinked conjugate. The isolated CFG-S conjugate was acidic, with a pKa value of 11.49, and a swelling index of 99.60%. Henderson-Hasselbalch equation predicted negligible ionization throughout the gastrointestinal pH range. The DSC thermogram highlights glass transition and temperature-specific structure stabilization through the exothermic crystallization domain. FTIR, SEM & XRD confirmed the structural conjugation and integrity of the conjugate. Tablets containing Venlafaxine hydrochloride as a model drug were prepared using CFG-S (14 and 57%) as excipient by wet granulation method. Percentage cumulative drug release with low concentration was up to 99.67175 ± 0.09 % in 5 h whereas with high concentration, it was extended to 12 h (P < 0.05). Korsemayer-Peppas release exponent indicates zero order (R2 = 0.9935) kinetics with super case-II anomalous transport showing diffusion and erosion as drug release mechanisms. The results confirmed that CFG-S isolate could act as a good binding agent at low concentrations and release extending cross-linked matrix former at a higher concentration for release retardant excipient.
Keywords: Arabinoxylan; Corn waste; Drug release; Starch; Sustainable delivery; Tablet formulation.
Copyright © 2023 Elsevier B.V. All rights reserved.