To generate the orbital-angular-momentum (OAM) modes at multiple wavelengths, which exactly fit with the dense-wavelength-division-multiplex (DWDM) channel grids, is important to the DWDM-based OAM mode-division-multiplex (MDM) fiber communication system. In this study, a full C-band covered and DWDM channelized OAM mode generator is firstly proposed and experimentally demonstrated, which is realized especially by using a broadband helical long-period fiber grating (HLPG) combined with a phase-only sampled multichannel fiber Bragg grating (MFBG). As a proof-of-concept example, the DWDM channelized two complementary 51-channel OAM mode generators have been successfully demonstrated, each of which has a channel spacing of 100 GHz (∼0.8 nm), an effective bandwidth of ∼40 nm, a high azimuthal-mode conversion efficiency of 90%, and high uniformities in both inter- and intra-channel spectra as well. To the best of our knowledge, this is the first time for proposal and experimental demonstration of such a high channel-count and DWDM channelized first-order OAM mode (l = 1) generator, which can also be used for multichannel higher-order OAM mode generation as long as the utilized HLPG is capable of generating a broadband higher-order OAM mode. The proposed device has potential applications to DWDM-based OAM fiber communications, OAM comb lasers, OAM holography, and OAM sensors as well.