Leaf functional traits vary among growth forms and vegetation zones in the Himalaya

Sci Total Environ. 2024 Jan 1:906:167274. doi: 10.1016/j.scitotenv.2023.167274. Epub 2023 Sep 21.

Abstract

Compression of life zones along elevational gradients in mountains supports diverse vegetation types, and therefore offers ideal setting to study plant functional traits. Functional traits, the features that enable plants to live in varied environmental conditions, help in understanding ecological interactions, evolutionary adaptations, and predicting plant response to global change drivers. To date, little is known how the trait diversity varies across different growth forms and vegetation zones in mountains. Here, we aimed to investigate interspecific leaf trait variability among different growth forms and vegetation zones along a wide elevation gradient (2000-4200 m) in Kashmir Himalaya. We measured leaf functional traits (specific leaf area-SLA, leaf thickness - LT, leaf dry matter content -LDMC) of 76 plant species corresponding to three growth forms (trees, shrubs and herbs) and three vegetation zones (Himalayan dry temperate forests, subalpine forests and alpine grasslands). Our results revealed high trait variability across the regional species pool studied. We found significant variation in leaf functional traits among the different growth forms, with higher values of LT and LDMC recorded for woody species than herbaceous ones. Among different vegetation zones, the SLA was found to be significantly higher at lower to middle elevations, while the other leaf traits (LT and LDMC) showed an opposite trend. Across all the vegetative zones, we also found a negative correlation between SLA and the other leaf traits, and the latter showed a positive trait-trait correlation. Overall, our study contributes to a deeper understanding of trait-trait, trait-growth form and trait-vegetation zone relationships. Our findings suggest that the variation in leaf functional traits among different growth forms seems to be a trade-off mechanism between resource acquisition and leaf construction, and also help in identifying species' adaptive functional traits that are critical for plant survival in the face of ongoing climate change in the Himalaya.

Keywords: Biodiversity; Elevation gradient; Functional diversity; Himalaya; Mountains.

MeSH terms

  • Forests*
  • Phenotype
  • Plant Leaves / physiology
  • Plants
  • Trees* / physiology