Postinfectious neuroinflammation has been implicated in multiple models of acute-onset obsessive-compulsive disorder including Sydenham chorea (SC), pediatric acute-onset neuropsychiatric syndrome (PANS), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS). These conditions are associated with a range of autoantibodies which are thought to be triggered by infections, most notably group A streptococci (GAS). Based on animal models using huma sera, these autoantibodies are thought to cross-react with neural antigens in the basal ganglia and modulate neuronal activity and behavior. As is true for many childhood neuroinflammatory diseases and rheumatological diseases, SC, PANS, and PANDAS lack clinically available, rigorous diagnostic biomarkers and randomized clinical trials. In this review article, we outline the accumulating evidence supporting the role neuroinflammation plays in these disorders. We describe work with animal models including patient-derived anti-neuronal autoantibodies, and we outline imaging studies that show alterations in the basal ganglia. In addition, we present research on metabolites, which are helpful in deciphering functional phenotypes, and on the implication of sleep in these disorders. Finally, we encourage future researchers to collaborate across medical specialties (e.g., pediatrics, psychiatry, rheumatology, immunology, and infectious disease) in order to further research on clinical syndromes presenting with neuropsychiatric manifestations.
Keywords: Blood-brain barrier; Neuroinflammation; Pediatric acute-onset neuropsychiatric syndrome; Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection; Sydenham chorea.
© 2023 The Author(s). Published by S. Karger AG, Basel.