Background: The study aims to explore the role of A1BG antisense RNA 1 (A1BG-AS1), microRNA (miR)-148a-3p and ubiquitin-specific protease 22 (USP22) on osteosarcoma (OS) cell growth.
Research design & methods: A1BG-AS1, miR-148a-3p, USP22, and silent information regulator 2 homolog 1 (SIRT1) levels in OS tissues and cells were determined. The effects of A1BG-AS1, miR-148a-3p, and USP22 on the biological functions of OS cells were examined by functional assays. In vivo assay was conducted to observe the effect of A1BG-AS1 on OS growth in vitro. The relationship of A1BG-AS1, miR-148a-3p, and USP22 was analyzed by bioinformatics analysis, RNA-fluorescence in situ hybridization, luciferase activity, and RNA binding protein immunoprecipitation assays. The relation between USP22 and SIRT1 was evaluated by immunoprecipitation.
Results: A1BG-AS1 and USP22 were highly expressed, and miR-148a-3p was lowly expressed in OS tissues and cells. Down-regulation of A1BG-AS1 and USP22 or up-regulation of miR-148a-3p impaired the malignant behaviors of OS cells. A1BG-AS1 sponged miR-148a-3p, and miR-148a-3p targeted USP22, thereby inhibiting USP22 expression. Up-regulating USP22 reversed the A1BG-AS1 suppression-induced phenotypic inhibition of OS cells. USP22 affected the biological functions of OS cells by deubiquitinating SIRT1.
Conclusion: A1BG-AS1 facilitates the biological functions of OS cells via mediating the miR-148a-3p/USP22 axis.
Keywords: Osteosarcoma; deubiquitination; long non-coding RNA A1BG antisense RNA 1; microRNA-148a-3p; silent information regulator 2 homolog 1; ubiquitin-specific protease 22.