Background/purpose: We previously demonstrated that irradiation with red light accelerates recovery of the epidermal water-impermeable barrier, whereas blue light delays it, and white and green light have no effect. Here, we aimed to examine in detail the effects of red and blue light in a human epidermal-equivalent model and in human skin.
Methods: We used light-emitting diodes (red light, 630 nm, 6.2 mW/cm2 ; blue light, 463 nm, 6.2 mW/cm2 ) for irradiation of an epidermal-equivalent model and human skin. Cell proliferation was evaluated by means of BrdU and Ki-67 staining, and mitochondrial activity was quantified with an extracellular flux analyzer.
Results: Irradiation of the epidermal-equivalent model with red light for 2 h (44.64 J/cm2 ) increased both epidermal proliferation in the basal layer and mitochondrial activity. Blue light had no effect on epidermal proliferation. Furthermore, irradiation with red light for 2 h on three consecutive days increased epidermal proliferation in human skin tissue in culture.
Conclusion: These results suggest that red light accelerates epidermal proliferation in both an epidermal-equivalent model and human skin, and may promote epidermal homeostasis.
Keywords: human keratinocytes; mitchondrial activity; proliferation; red light.
© 2023 The Authors. Skin Research and Technology published by John Wiley & Sons Ltd.