Experimental and interventional studies show that light can regulate sleep timing and sleepiness while awake by setting the phase of circadian rhythms and supporting alertness. The extent to which differences in light exposure explain variations in sleep and sleepiness within and between individuals in everyday life remains less clear. Here, we establish a method to address this deficit, incorporating an open-source wearable wrist-worn light logger (SpectraWear) and smartphone-based online data collection. We use it to simultaneously record longitudinal light exposure (in melanopic equivalent daylight illuminance), sleep timing, and subjective alertness over seven days in a convenience sample of 59 UK adults without externally imposed circadian challenge (e.g., shift work or jetlag). Participants reliably had strong daily rhythms in light exposure but frequently were exposed to less light during the daytime and more light in pre-bedtime and sleep episodes than recommended [T. M. Brown et al., PLoS Biol. 20, e3001571 (2022)]. Prior light exposure over several hours was associated with lower subjective sleepiness with, in particular, brighter light in the late sleep episode and after wake linked to reduced early morning sleepiness (sleep inertia). Higher pre-bedtime light exposure was associated with longer sleep onset latency. Early sleep timing was correlated with more reproducible and robust daily patterns of light exposure and higher daytime/lower night-time light exposure. Our study establishes a method for collecting longitudinal sleep and health/performance data in everyday life and provides evidence of associations between light exposure and important determinants of sleep health and performance.
Keywords: light; melanopic; sleep; sleepiness.