Modulation of Phase Transition in Cobalt Selenide with Simultaneous Construction of Heterojunctions for Highly-Efficient Oxygen Electrocatalysis in Zinc-Air Battery

Adv Mater. 2024 Feb;36(8):e2306844. doi: 10.1002/adma.202306844. Epub 2023 Dec 14.

Abstract

Phase transformation of cobalt selenide (CoSe2 ) can effectively modulate its intrinsic electrocatalytic activity. However, enhancing electroconductivity and catalytic activity/stability of CoSe2 still remains challenging. Heterostructure engineering may be feasible to optimize interfacial properties to promote the kinetics of oxygen electrocatalysis on a CoSe2 -based catalyst. Herein, a heterostructure consisting of CoSe2 and cobalt nitride (CoN) embedded in a hollow carbon cage is designed via a simultaneous phase/interface engineering strategy. Notably, the phase transition of orthorhombic-CoSe2 to cubic-CoSe2 (c-CoSe2 ) accompanied by in situ CoN formation is realized to build the c-CoSe2 /CoN heterointerface, which exhibits excellent/highly stable activities for oxygen reduction/evolution reactions (ORR/OER). Notably, heterostructure can modulate the local coordination environment and increase Co-Se/N bond lengths. Theoretical calculations show that Co-site (c-CoSe2 ) with an electronic state near Fermi energy level is the main active site for ORR/OER.Energetical tailoring of the d-orbital electronic structure of the Co atom of c-CoSe2 in heterostructure by in situ CoN incorporation lowers thermodynamic barriers for ORR/OER. Attractively, a zinc-air battery with a c-CoSe2 -CoN cathode displays excellent cycling stability (250 h) and charge/discharge voltage loss (0.953/0.96 V). It highlights that heterointerface engineering provides an option for modulating the bifunctional activity of metal selenides with controlled phase transformation.

Keywords: cubic pyrite-CoSe2; electronic structure; heterostructures; phase transition engineering; structure-property correlation.