Kynurenic acid (KYNA), an endogenous neuroprotectant with antiexcitotoxic, antioxidant, and anti-inflammatory effects, is synthesized through the tryptophan-kynurenine (KYN) pathway. We investigated whether brain KYN or KYNA levels were affected by asphyxia in a translational piglet model of hypoxic-ischemic encephalopathy (HIE). We also studied brain levels of the putative blood-brain barrier (BBB) permeable neuroprotective KYNA analogue SZR72, and whether SZR72 or therapeutic hypothermia (TH) modified KYN or KYNA levels. KYN, KYNA, and SZR72 levels were determined using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry in five brain regions 24 h after 20 min of asphyxia in vehicle-, SZR72- and TH-treated newborn piglets (n = 6-6-6) and naive controls (n = 4). Endogenous brain KYN levels (median range 311.2-965.6 pmol/g) exceeded KYNA concentrations (4.5-6.0 pmol/g) ~100-fold. Asphyxia significantly increased cerebral KYN and KYNA levels in all regions (1512.0-3273.9 and 16.9-21.2 pmol/g, respectively), increasing the KYN/Tryptophan-, but retaining the KYNA/KYN ratio. SZR72 treatment resulted in very high cerebral SZR72 levels (13.2-33.2 nmol/g); however, KYN and KYNA levels remained similar to those of the vehicle-treated animals. However, TH virtually ameliorated asphyxia-induced elevations in brain KYN and KYNA levels. The present study reports for the first time that the KYN pathway is altered during HIE development in the piglet. SZR72 readily crosses the BBB in piglets but fails to affect cerebral KYNA levels. Beneficial effects of TH may include restoration of the tryptophan metabolism to pre-asphyxia levels.
Keywords: hypoxia; kynurenine pathway; neonate; newborn pig; tryptophan metabolism.