Managing nitrogen in maize production for societal gain

PNAS Nexus. 2023 Oct 24;2(10):pgad319. doi: 10.1093/pnasnexus/pgad319. eCollection 2023 Oct.

Abstract

Highly productive agriculture is essential to feed humanity, but agricultural practices often harm human health and the environment. Using a nitrogen (N) mass-balance model to account for N inputs and losses to the environment, along with empirical based models of yield response, we estimate the potential gains to society from improvements in nitrogen management that could reduce health and environmental costs from maize grown in the US Midwest. We find that the monetized health and environmental costs to society of current maize nitrogen management practices are six times larger than the profits earned by farmers. Air emissions of ammonia from application of synthetic fertilizer and manure are the largest source of pollution costs. We show that it is possible to reduce these costs by 85% ($21.6 billion per year, 2020$) while simultaneously increasing farmer profits. These gains come from (i) managing fertilizer ammonia emissions by changing the mix of fertilizer and manure applied, (ii) improving production efficiency by reducing fertilization rates, and (iii) halting maize production on land where health and environmental costs exceed farmer profits, namely on low-productivity land and locations in which emissions are especially harmful. Reducing ammonia emissions from changing fertilizer types-in (i)-reduces health and environmental costs by 46% ($11.7 billion). Reducing fertilization rates-in (ii)-limits nitrous oxide emissions, further reducing health and environmental costs by $9.5 billion, and halting production on 16% of maize-growing land in the Midwest-in (iii)-reduces costs by an additional $0.4 billion.

Keywords: agricultural economics; air pollution; environmental economics; environmental science; pollution costs.