Power Is More Relevant Than Ascensional Speed to Determine Metabolic Demand at Different Gradient Slopes During Running

J Strength Cond Res. 2023 Nov 1;37(11):2298-2301. doi: 10.1519/JSC.0000000000004598.

Abstract

Hingrand, C, Olivier, N, Combes, A, Bensaid, S, and Daussin, FN. Power is more relevant than ascensional speed to determine metabolic demand at different gradient slopes during running. J Strength Cond Res 37(11): 2298-2301, 2023-Trail running is characterized by successive uphill and downhill running sessions. To prescribe training intensity, an assessment of maximal running capacity is required. This study compared 2 uphill incremental tests using the same ascensional speed increment to identify the influence of the slope gradient on performance. Ten subjects (8 men and 2 women) performed 3 incremental exercises on various slope (1%: IT01, 10%: IT10, and 25%: IT25), and the ascensional speed increment was similar between IT10 and IT25 (100 m·h-1 every minute). Gas exchanges, heart rate, and power were monitored continuously during the tests. Similar V̇o2max levels were observed in the 3 conditions: 68.7 ± 6.2 for IT01, 70.1 ± 7.3 for IT10, and 67.6 ± 7.0 for IT25. A greater maximal ascensional speed was reached in the IT25 (1760 ± 190 vs. 1,330 ± 106 for IT25 and IT10, respectively, p < 0.01). A significant relationship was observed between relative V̇o2 levels and relative power without any effect of slope. Power should be the parameter used for prescribing training intensity compared with ascensional speed in trail.

MeSH terms

  • Exercise
  • Exercise Therapy
  • Female
  • Heart Rate
  • Humans
  • Male
  • Oxygen Consumption / physiology
  • Running* / physiology