Febrile urinary tract infection (fUTI) is common in infants, but specific risk factors for developing it remain unclear. As most fUTIs are caused by ascending infections of intestinal bacteria, dysbiosis-an imbalance in gut microbial communities-may increase fUTI risk. This study was conducted to test the hypothesis that abnormal development of gut microbiota during infancy increases the risk of developing fUTI. Stool samples were collected from 28 infants aged 3-11 months with first-onset fUTI (fUTI group) and 51 healthy infants of the same age (HC group). After bacterial DNA extraction, 16S rRNA expression was measured and the diversity of gut microbiota and constituent bacteria were compared between the two groups. The alpha diversity of gut microbiota (median Shannon index and Chao index) was significantly lower in the fUTI group (3.0 and 42.5) than in the HC group (3.7 and 97.0; p < 0.001). The beta diversity also formed different clusters between the two groups (p < 0.001), suggesting differences in their microbial composition. The linear discriminant analysis effect size showed that the fUTI group proportionally featured significantly more Escherichia-Shigella in the gut microbiota (9.5%) than the HC group (3.1%; p < 0.001). In summary, abnormal gut microbiota development during infancy may increase the risk of fUTI.
Keywords: 16S rRNA gene sequencing; abnormal development of microbiota; febrile urinary tract infection; gut microbiota.