In situ vaccination (ISV) triggers an immune response to tumor-associated antigens at 1 tumor site, which can then tackle the disease throughout the body. Here, we report clinical and biological results of a phase 1/2 ISV trial in patients with low-grade lymphoma, combining an intratumoral toll-like receptor 9 (TLR9) agonist with local low-dose radiation and ibrutinib (an inhibitor of B- and T-cell kinases). Adverse events were predominately low grade. The overall response rate was 50%, including 1 complete response. All patients experienced tumor reduction at distant sites. Single-cell analyses of serial fine needle aspirates from injected and uninjected tumors revealed correlates of clinical response, such as lower CD47 and higher major histocompatibility complex class II expression on tumor cells, enhanced T-cell and natural killer cell effector function, and reduced immune suppression from transforming growth factor β and inhibitory T regulatory 1 cells. Although changes at the local injected site were more pronounced, changes at distant uninjected sites were more often associated with clinical responses. Functional immune response assays and tracking of T-cell receptor sequences provided evidence of treatment-induced tumor-specific T-cell responses. Induction of immune effectors and reversal of negative regulators were both important in producing clinically meaningful tumor responses. The trial was registered at www.clinicaltrials.gov as #NCT02927964.
© 2024 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.