Longitudinal dynamic clinical phenotypes of in-hospital COVID-19 patients across three dominant virus variants in New York

Int J Med Inform. 2024 Jan:181:105286. doi: 10.1016/j.ijmedinf.2023.105286. Epub 2023 Nov 8.

Abstract

Background: COVID-19 is a challenging disease to characterize given its wide-ranging heterogeneous symptomatology. Several studies have attempted to extract clinical phenotypes but often relied on data from small patient cohorts, usually limited to only one viral variant and utilizing a static snapshot of patient data.

Objective: This study aimed to identify clinical phenotypes of hospitalized COVID-19 patients and investigate their longitudinal dynamics throughout the pandemic, with the goal to relate these phenotypes to clinical outcomes and treatment strategies.

Methods: We utilized routinely collected demographic and clinical data throughout the hospitalization of 38,077 patients admitted between 3/2020 to 5/2022, in 12 New York hospitals. Uniform Manifold Approximation and Projection and agglomerative hierarchical clustering were used to derive the clusters, followed by exploratory data analysis to compare the prevalence of comorbidities and treatments per cluster.

Results: 4 distinct clinical phenotypes remained robust in multi-site validation and were associated with different mortality rates. The temporal progression of these phenotypes throughout the COVID-19 pandemic demonstrated increased variability across the waves of the three dominant viral variants (alpha, delta, omicron). Longitudinal analysis evaluating changes in clinical phenotypes of each patient throughout the course of a 4-week hospital stay exemplified the dynamic nature of the disease progression. Factors such as sex, race/ethnicity and specific treatment modalities revealed significant and clinically relevant differences between the observed phenotypes.

Conclusions: Our proposed methodology has the potential of enabling clinicians and policy makers to draw evidence-based conclusions for guiding treatment modalities in a dynamic fashion.

Keywords: Agglomerative Hierarchical Clustering; Clinical Phenotypes; Covid-19; Longitudinal phenotyping; Uniform Manifold Approximation and Projection; Unsupervised Clustering.

MeSH terms

  • COVID-19* / epidemiology
  • Hospitals
  • Humans
  • New York / epidemiology
  • Pandemics*
  • Phenotype