Models that postulate the existence of hidden sectors address contemporary questions, such as the source of baryogenesis and the nature of dark matter. Neutron-to-hidden-neutron oscillations are among the possible mixing processes and have been tested with ultracold neutron storage and passing-through-wall experiments to set constraints on the oscillation period τ_{nn^{'}}. These searches probe the oscillations as a function of the mass splitting due to the neutron-hidden-neutron energy degeneracy. In this work, we present a new limit derived from neutron disappearance in ultracold neutron beam experiments. The overall limit, given by τ_{nn^{'}}>1 s for |δm|∈[2,69] peV(95.45% C.L.), covers the yet unexplored intermediate mass-splitting range and contributes to the ongoing research on hidden sectors.