Objectives: Gene rearrangements frequently act as oncogenic driver mutations and determine the onset and progression of cancer. RNA-based next-generation sequencing (NGS) is being used with increasing frequency for solid tumors. The purpose of our study is to investigate the feasibility and utility of an RNA-based NGS fusion panel for solid tumors.
Methods: We conducted a retrospective, single-institution review of fusion panels requested between May 2022 and March 2023. Demographic, clinical, pathologic, and molecular findings of the patients were reviewed. The utility of the RNA-based NGS fusion panel for the pathologic diagnosis of solid tumors was assessed.
Results: Our study included 345 cases, and a fusion event was identified in 24.3% (78/321) of cases. Among the 110 cases submitted for diagnostic purposes, a fusion event was detected in 42.7% (47/110) of cases. The results led to refinement or clarification of the initial diagnosis in 31.9% (15/47) of cases and agreement or support for the initial diagnosis in 59.6% (28/47) of cases. Furthermore, our study indicated that the overall cellularity (tumor and normal tissue) of the tested specimen influences the success of the testing process.
Conclusions: In summary, this study demonstrated the feasibility and utility of an RNA-based NGS fusion panel for a wide variety of solid tumors in the appropriate clinicopathologic context. These findings warrant further validation in larger studies involving multiple institutional patient cohorts.
Keywords: RNA-based next-generation sequencing; fusion; solid tumor.
© The Author(s) 2023. Published by Oxford University Press on behalf of American Society for Clinical Pathology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.