Rationale: Particulate matter with an aerodynamic diameter ⩽2.5 μm is associated with adverse outcomes in fibrotic interstitial lung disease (fILD), but the impact of ultrafine particulates (UFPs; aerodynamic diameter ⩽100 nm) remains unknown. Objective: To evaluate UFP associations with clinical outcomes in fILD. Methods: We conducted a multicenter, prospective cohort study enrolling patients with fILD from the University of Pittsburgh Dorothy P. and Richard P. Simmons Center and the Pulmonary Fibrosis Foundation Patient Registry (PFF-PR). Using a national-scale UFP model, we linked exposures using three approaches in the Simmons cohort (residential address geocoordinates, ZIP code centroid geocoordinates, and ZIP code average) and two in the PFF-PR for which only five-digit ZIP code was available (ZIP code centroid and ZIP code average). We tested UFP associations with transplantation-free survival using multivariable Cox proportional-hazards models, baseline percentage predicted FVC and DlCO using multivariable linear regressions, and decline in FVC and DlCO using linear mixed models adjusting for age, sex, smoking, race, socioeconomic status, site, particulate matter with an aerodynamic diameter ⩽2.5, and nitrogen dioxide. Measurements and Main Results: Annual mean outdoor UFP concentrations for 2017 were estimated for 1,416 Simmons and 1,919 PFF-PR patients. Increased UFP concentration was associated with transplantation-free survival in fully adjusted Simmons residential address models (hazard ratio, 1.08 per 1,000 particles/cm3 [95% confidence interval, 1.01-1.15]; P = 0.02) but not PFF-PR models, which used less precise linkage approaches. Higher UFP exposure was associated with lower baseline FVC and more rapid FVC decline in the Simmons registry. Conclusions: Increased UFP exposure was associated with transplantation-free survival and lung function in the cohort with precise residential location linkage. This work highlights the need for more robust regulatory networks to study the health effects of UFPs nationwide.
Keywords: ILD; air pollution; idiopathic pulmonary fibrosis; particulate matter with an aerodynamic diameter ⩽2.5 μm; ultrafine particulate matter.