We report on efficient and stable, type-I phase-matched second harmonic conversion of a nanosecond high-energy, diode-pumped, Yb:YAG laser. With a frequency-doubling crystal in an enclosed, temperature controller with optical windows, 0.5% energy stability was achieved for approximately half an hour. This resulted in 48.9 J pulses at 10 Hz (489 W) and a conversion efficiency of 73.8%. These results are particularly important for stable and reliable operation of high-energy, frequency-doubled lasers.