Capturing the Coverage Dependence of Aromatics' Adsorption through Mean-Field Models

J Phys Chem A. 2023 Dec 21;127(50):10693-10700. doi: 10.1021/acs.jpca.3c05456. Epub 2023 Dec 7.

Abstract

To capture the dominant interactions (surface-mediated and through-space) in catalytic hydrodeoxygenation systems, coverage-dependent mean-field models of aromatic adsorption are developed on Pt(111) and Ru(0001). We derive three key insights from this work: (1) we can universally apply mean-field models to capture the coverage-dependent behavior of oxygenated aromatics on transition-metal surfaces, (2) we can deconvolute surface-mediated and through-space interactions from the mean-field model, and (3) we can develop relatively accurate models that predict the adsorption energy of aromatics on transition-metal surfaces for the full coverage range using the work function at the lowest modeled coverage. Our approach enables the rapid prediction of the coverage-dependent behavior of oxygenated aromatics on transition-metal surfaces, reducing the computational cost associated with these studies by an order of magnitude.