ISABELA Studies: Plasma Exposure and Target Engagement Do Not Explain the Lack of Efficacy of Ziritaxestat in Patients with Idiopathic Pulmonary Fibrosis

Clin Pharmacol Ther. 2024 Mar;115(3):606-615. doi: 10.1002/cpt.3138. Epub 2024 Jan 5.

Abstract

Autotaxin (ATX) contributes to the production of lysophosphatidic acid (LPA), which is associated with fibrosis development in idiopathic pulmonary fibrosis (IPF). The ATX inhibitor ziritaxestat failed to reduce decline in forced vital capacity (FVC) in patients with IPF in ISABELA 1 and 2 (NCT03711162 and NCT03733444), two identically designed phase III studies. In the current analysis, we evaluated pharmacokinetic and pharmacodynamic data from the pooled ISABELA studies to determine whether the lack of efficacy could be attributed to insufficient exposure and/or target engagement. Nonlinear mixed effect modeling was performed to predict ziritaxestat exposure in individual patients and describe its effect on LPA C18:2 levels. We assessed whether there was a correlation between ziritaxestat and ATX concentration and evaluated the relationship between LPA C18:2 reduction and change from baseline in FVC. Ziritaxestat exposure in patients with IPF was numerically lower in those who received ziritaxestat on top of pirfenidone than in those who received ziritaxestat on top of nintedanib or ziritaxestat alone. In most patients, LPA C18:2 reduction was comparable to that reported in healthy volunteers. ATX concentrations increased over time and correlated weakly with ziritaxestat exposure and LPA C18:2 reduction. No correlation between reduction in LPA C18:2 and change from baseline in FVC was apparent. Based on these evaluations, exposure and target engagement are not thought to have contributed to the lack of efficacy observed. We hypothesize that the lack of efficacy of ziritaxestat in the ISABELA program, despite adequate LPA reduction, could be due to the involvement of an alternative pro-fibrotic pathway.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fibrosis
  • Humans
  • Idiopathic Pulmonary Fibrosis* / chemically induced
  • Idiopathic Pulmonary Fibrosis* / drug therapy
  • Imidazoles / pharmacokinetics
  • Pyrimidines / pharmacokinetics

Substances

  • GLPG1690
  • Imidazoles
  • Pyrimidines