Electroceutical approaches for the treatment of neurological disorders, such as stroke, can take advantage of neuromorphic engineering, to develop devices able to achieve a seamless interaction with the neural system. This paper illustrates the development and test of a hardware-based Spiking Neural Network (SNN) to deliver neural-like stimulation patterns in an open-loop fashion. Neurons in the SNN have been designed by following the Hodgkin-Huxley formalism, with parameters taken from neuroscientific literature. We then built the set-up to deliver the SNN-driven stimulation in vivo. We used deeply anesthetized healthy rats to test the potential effect of the SNN-driven stimulation. We analyzed the neuronal firing activity pre- and post-stimulation in both the primary somatosensory and the rostral forelimb area. Our results showed that the SNN-based neurostimulation was able increase the spontaneous level of neuronal firing at both monitored locations, as found in the literature only for closed-loop stimulation. This study represents the first step towards translating the use of neuromorphic-based devices into clinical applications.Clinical Relevance- Stroke represents one of the leading causes of long-term disability and death worldwide. Intracortical microstimulation is an effective approach for restoring lost sensory motor integration by promoting plasticity among the affected brain areas. Stimulation delivered via neuromorphic-based open-loop systems (i.e. neuromorphic prostheses) can pave the way to novel electroceutical strategies for brain repair.