A Novel Portable, Mobile MRI: Comparison with an Established Low-Field Intraoperative MRI System

Asian J Neurosurg. 2023 Sep 22;18(3):492-498. doi: 10.1055/s-0043-1760857. eCollection 2023 Sep.

Abstract

Background MRI (magnetic resonance imaging) using low-magnet field strength has unique advantages for intraoperative use. We compared a novel, compact, portable MR imaging system to an established intraoperative 0.15 T system to assess potential utility in intracranial neurosurgery. Methods Brain images were acquired with a 0.15 T intraoperative MRI (iMRI) system and a 0.064 T portable MR system. Five healthy volunteers were scanned. Individual sequences were rated on a 5-point (1 to 5) scale for six categories: contrast, resolution, coverage, noise, artifacts, and geometry. Results Overall, the 0.064 T images (M = 3.4, SD = 0.1) had statistically higher ratings than the 0.15 T images (M = 2.4, SD = 0.2) ( p < 0.01). All comparable sequences (T1, T2, T2 FLAIR and SSFP) were rated significantly higher on the 0.064 T and were rated 1.2 points (SD = 0.3) higher than 0.15 T scanner, with the T2 fluid-attenuated inversion recovery (FLAIR) sequences showing the largest increment on the 0.064 T with an average rating difference of 1.5 points (SD = 0.2). Scanning time for the 0.064 T system obtained images more quickly and encompassed a larger field of view than the 0.15 T system. Conclusions A novel, portable 0.064 T self-shielding MRI system under ideal conditions provided images of comparable quality or better and faster acquisition times than those provided by the already well-established 0.15 T iMR system. These results suggest that the 0.064 T MRI has the potential to be adapted for intraoperative use for intracranial neurosurgery.

Keywords: hyperfine; intraoperative MRI; low field; point of care imaging; portable MRI.