The intense urge to replace conventional polymers with ecofriendly monomers is a step towards green products. The novelty of this study is the extraction of starch from the biowaste of wheat bran (WB) and banana peel (BP) for use as a monomer in the form of chain extenders. For the synthesis of polyurethane (PU) elastomers, polyethylene glycol (PEG) bearing an average molecular weight Mn = 1000 g mol-1 was used as a macrodiol, which was reacted with isophorone diisocyanate (IPDI) to develop NCO-terminated prepolymer chains. These prepolymer chains were terminated with chain extenders. Two series of linear PU elastomers were prepared by varying the concentration of chain extenders (0.5-2.5 mol%), inducing a variation of 40 to 70 wt% in the hard segment (HS). Fourier-transform infrared (FTIR) spectroscopy confirmed the formation of urethane linkages. Thermal gravimetric analysis (TGA) showed a thermal stability of up to 250 °C. Dynamic mechanical analysis (DMA) revealed a storage modulus (E') of up to 140 MPa. Furthermore, the hemolytic activities of up to 8.97 ± 0.1% were recorded. The inhibition of biofilm formation was investigated against E. coli and S. aureus (%), which was supported by phase contrast microscopy.
This journal is © The Royal Society of Chemistry.