Hepatocellular carcinoma (HCC) results in high mortality due to ineffective systemic therapy. Human immortalized cell lines are commonly used to study anti-tumor effects in the context of new anti-tumor therapies and tumor biology. As immortalized cell lines have limited biological relevance and heterogeneity compared to primary cells, patient-derived tumor tissues, and corresponding immune cells are the gold standards for studying the complexity of individual tumor entities. However, culturing primary HCC cells has a low success rate. Here, we aimed to establish a reproducible approach to preserve the patient-derived liver cancer cells for in vitro and in vivo studies. The underlying study aimed to establish an in vitro pre-screening platform to test treatment options' effectivity and dosage, e.g., for new substances, autologous modified immune cells, or combined therapies in HCC. We initially employed 15 surgical resection specimens from patients with different HCC entities for isolation and preservation. The isolated liver cancer cells from four HCC-diagnosed patients were used for orthotopic transplantation into the healthy liver of immunodeficient mice, allowing them to grow for six months before human liver cancer cells were isolated and cultured. As a result, we generated and characterized four new primary-like liver cancer cell lines. Compared to immortalized HCC cell lines, freshly generated liver cancer cells displayed individual morphologies and heterogeneous protein-level characteristics. We assessed their ability to proliferate, migrate, form spheroids, and react to common medications compared to immortalized HCC cell lines. All four liver cancer cell lines exhibit strong migration and colony-forming characteristics in vitro, comparable to extensively investigated immortalized HCC cell lines. Moreover, the four etiological different liver cancer cell lines displayed differences in the response to 5-FU, Sorafenib, Axitinib, and interferon-alpha treatment, ranking from non-responders to responders depending on the applicated medication. In sum, we generated individual patient-derived liver cancer cell lines suitable for predictive in vitro drug screenings and for xenograft transplantations to realize the in vivo investigation of drug candidates. We overcame the low cultivation success rate of liver cancer cells derived from patients and analyzed their potential to serve a pre-clinical model.
Keywords: in vitro investigating; orthotopic transplantation; patient-derived HCC cell lines; therapeutic testing.