Background: Cone beam computed tomography (CBCT) is widely used in many medical fields. However, conventional CBCT circular scans suffer from cone beam (CB) artifacts that limit the quality and reliability of the reconstructed images due to incomplete data.
Purpose: Saddle trajectories in theory might be able to improve the CBCT image quality by providing a larger region with complete data. Therefore, we investigated the feasibility and performance of saddle trajectory CBCT scans and compared them to circular trajectory scans.
Methods: We performed circular and saddle trajectory scans using a novel robotic CBCT scanner (Mobile ImagingRing (IRm); medPhoton, Salzburg, Austria). For the saddle trajectory, the gantry executed yaw motion up to using motorized wheels driving on the floor. An infrared (IR) tracking device with reflective markers was used for online geometric calibration correction (mainly floor unevenness). All images were reconstructed using penalized least-squares minimization with the conjugate gradient algorithm from RTK with voxel size. A disk phantom and an Alderson phantom were scanned to assess the image quality. Results were correlated with the local incompleteness value represented by , which was calculated at each voxel as a function of the source trajectory and the voxel's 3D coordinates. We assessed the magnitude of CB artifacts using the full width half maximum (FWHM) of each disk profile in the axial center of the reconstructed images. Spatial resolution was also quantified by the modulation transfer function at 10% (MTF10).
Results: When using the saddle trajectory, the region without CB artifacts was increased from 43 to 190 mm in the SI direction compared to the circular trajectory. This region coincided with low values for . When was larger than 0.02, we found there was a linear relationship between the FWHM and . For the saddle, IR tracking allowed the increase of MTF10 from 0.37 to 0.98 lp/mm.
Conclusions: We achieved saddle trajectory CBCT scans with a novel CBCT system combined with IR tracking. The results show that the saddle trajectory provides a larger region with reliable reconstruction compared to the circular trajectory. The proposed method can be used to evaluate other non-circular trajectories.
Keywords: CBCT; cone beam artifact; data insufficiency; infrared tracking; robotic; saddle trajectories.
© 2024 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.