Association of scan frequency with CGM-derived metrics and influential factors in adults with type 1 diabetes mellitus

Diabetol Int. 2023 Sep 12;15(1):109-116. doi: 10.1007/s13340-023-00655-9. eCollection 2024 Jan.

Abstract

Introduction: This study aimed to investigate the association between scan frequency and intermittently scanned continuous glucose monitoring (isCGM) metrics and to clarify the factors affecting scan frequency in adults with type 1 diabetes mellitus (T1D).

Methods: We enrolled adults with T1D who used FreeStyle® Libre. Scan and self-monitoring of blood glucose (SMBG) frequency and CGM metrics from the past 90-day glucose data were collected. The receiver operating characteristic curve was plotted to obtain the optimal cutoff values of scan frequency for the target values of time in range (TIR), time above range (TAR), and time below range (TBR).

Results: The study was conducted on 211 adults with T1D (mean age, 50.9 ± 15.2 years; male, 40.8%; diabetes duration, 16.4 ± 11.9 years; duration of CGM use, 2.1 ± 1.0 years; and mean HbA1c, 7.6 ± 0.9%). The average scan frequency was 10.5 ± 3.3 scan/day. Scan frequency was positively correlated with TIR and negatively correlated with TAR, although it was not significantly correlated with TBR. Scan frequency was positively correlated with the hypoglycemia fear survey-behavior score, while it was negatively correlated with some glycemic variability metrics. Adult patients with T1D and good exercise habits had a higher scan frequency than those without exercise habits. The AUC for > 70% of the TIR was 0.653, with an optimal cutoff of 11 scan/day.

Conclusions: In real-world conditions, frequent scans were linked to improved CGM metrics, including increased TIR, reduced TAR, and some glycemic variability metrics. Exercise habits and hypoglycemia fear-related behavior might affect scan frequency. Our findings could help healthcare professionals use isCGM to support adults with T1D.Clinical Trial Registry No. UMIN000039376.

Keywords: Blood glucose monitoring frequency; Flash glucose monitoring; Real-world data; Type 1 diabetes.