Association of the pathomics-collagen signature with lymph node metastasis in colorectal cancer: a retrospective multicenter study

J Transl Med. 2024 Jan 25;22(1):103. doi: 10.1186/s12967-024-04851-2.

Abstract

Background: Lymph node metastasis (LNM) is a prognostic biomarker and affects therapeutic selection in colorectal cancer (CRC). Current evaluation methods are not adequate for estimating LNM in CRC. H&E images contain much pathological information, and collagen also affects the biological behavior of tumor cells. Hence, the objective of the study is to investigate whether a fully quantitative pathomics-collagen signature (PCS) in the tumor microenvironment can be used to predict LNM.

Methods: Patients with histologically confirmed stage I-III CRC who underwent radical surgery were included in the training cohort (n = 329), the internal validation cohort (n = 329), and the external validation cohort (n = 315). Fully quantitative pathomics features and collagen features were extracted from digital H&E images and multiphoton images of specimens, respectively. LASSO regression was utilized to develop the PCS. Then, a PCS-nomogram was constructed incorporating the PCS and clinicopathological predictors for estimating LNM in the training cohort. The performance of the PCS-nomogram was evaluated via calibration, discrimination, and clinical usefulness. Furthermore, the PCS-nomogram was tested in internal and external validation cohorts.

Results: By LASSO regression, the PCS was developed based on 11 pathomics and 9 collagen features. A significant association was found between the PCS and LNM in the three cohorts (P < 0.001). Then, the PCS-nomogram based on PCS, preoperative CEA level, lymphadenectasis on CT, venous emboli and/or lymphatic invasion and/or perineural invasion (VELIPI), and pT stage achieved AUROCs of 0.939, 0.895, and 0.893 in the three cohorts. The calibration curves identified good agreement between the nomogram-predicted and actual outcomes. Decision curve analysis indicated that the PCS-nomogram was clinically useful. Moreover, the PCS was still an independent predictor of LNM at station Nos. 1, 2, and 3. The PCS nomogram displayed AUROCs of 0.849-0.939 for the training cohort, 0.837-0.902 for the internal validation cohort, and 0.851-0.895 for the external validation cohorts in the three nodal stations.

Conclusions: This study proposed that PCS integrating pathomics and collagen features was significantly associated with LNM, and the PCS-nomogram has the potential to be a useful tool for predicting individual LNM in CRC patients.

Keywords: Collagen features; Colorectal cancer; Lymph node metastasis; Pathomics.

Publication types

  • Multicenter Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calibration
  • Collagen*
  • Colorectal Neoplasms*
  • Humans
  • Lymph Nodes
  • Lymphatic Metastasis
  • Nomograms
  • Tumor Microenvironment

Substances

  • Collagen