The use of human amniotic membrane (HAM) has recently gained attention as a promising alternative option for duraplasty due to its superior tensile strength, elasticity, and anti-inflammatory and anti-fibrotic properties, offering greater durability and reliability compared to autologous grafts like the muscle fascia and pericranium. This systematic review aimed to evaluate the complications associated with duraplasty using HAM. We comprehensively searched the PubMed, Scopus, and Web of Science databases for studies on duraplasty with HAM. The eligibility criteria included studies on patients who underwent dural repair with duraplasty using HAM, with or without a control group. Duraplasty involves opening the dura mater, the protective covering of the brain and spinal cord, and using a graft to enlarge the space around the cerebellum. Dual repair, on the other hand, involves repairing the dura mater without opening it and then using a patch to enlarge the space around the cerebellum. Randomized controlled trials, observational studies, case series, and case reports were included, and quality assessment was conducted. Our search yielded 191 articles. Ten studies were included, with a total of 560 participants. The overall incidence of cerebrospinal fluid (CSF) leakage was three (0.63%) out of 478 in the HAM group and three (4.76%) out of 63 in the other methods group (pericranium, temporalis fascia, and biological dural substitutes). Regarding the incidence of postoperative complications, the overall incidence was eight (1.92%) out of 417 in the HAM group and two (8%) out of 25 in the other methods group. The overall incidence of meningitis was one (0.67%) out of 150 in the HAM group and three (10%) out of 30 in the other methods group. In conclusion, duraplasty using HAM may be a safe and effective alternative to traditional methods, with a low incidence of CSF leakage and postoperative complications.
Keywords: amnion; dura mater; dural repair; dural substitutes; duraplasty; human amniotic membrane.
Copyright © 2023, Abbas et al.